organic compounds

 $0.86 \times 0.08 \times 0.07~\mathrm{mm}$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-{(E)-[(4-Formylphenyl)iminiumyl]methyllnaphthalen-2-olate

Abeer Mohamed Farag,^a Siang Guan Teoh,^a‡ Hasnah Osman,^a Madhukar Hemamalini^b and Hoong-Kun Fun^{b*}§

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 8 December 2010; accepted 10 December 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.064; wR factor = 0.171; data-to-parameter ratio = 12.3.

The title Schiff base compound, $C_{18}H_{13}NO_2$, is a zwitterion, with the naphthol hydroxy group deprotonated and the imine N atom protonated. It adopts an E configuration about the central C=N double bond. The dihedral angle between the naphthyl ring system and the benzene ring is 1.73 (11)°. An intramolecular N-H···O hydrogen bond generates an S(6)ring motif. In the crystal, adjacent molecules are connected by intermolecular C-H···O hydrogen bonds, forming a supramolecular ribbon along the b axis.

Related literature

For details and applications of condensation reactions, see: Alsalim et al. (2010); Wadher et al. (2009); Abou-Melha & Faruk (2008); Sondhi et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

C18H13NO2 $M_r = 275.29$ Monoclinic, $P2_1/c$ a = 7.3685 (8) Å b = 12.7437 (13) Å c = 14.4586 (15) Å $\beta = 91.979 \ (7)^{\circ}$ V = 1356.9 (2) Å³ Z = 4Mo Ka radiation

 $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker SMART APEXII CCD 11574 measured reflections area-detector diffractometer 2394 independent reflections Absorption correction: multi-scan 1416 reflections with $I > 2\sigma(I)$ (SADABS; Bruker, 2009) $R_{\rm int} = 0.054$ $T_{\min} = 0.928, \ T_{\max} = 0.994$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.064$ H atoms treated by a mixture of $wR(F^2) = 0.171$ independent and constrained S = 1.04refinement $\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$ 2394 reflections $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ 194 parameters

Table 1 Hydrogen-bond geometry (Å, °).

D

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1N1···O1	1.00 (3)	1.68 (3)	2.551 (3)	143 (2)
$C8-H7\cdots O2^{i}$	0.93	2.54	3.399 (4)	153
$C17 - H17A \cdots O2^{i}$	0.93	2.57	3.453 (4)	159

Symmetry code: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

AMF, SGT and HO thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (815002). AMF also thanks the Libyan Government for providing a scholarship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2641).

References

- Abou-Melha, K. S. & Faruk, H. (2008). J. Iran. Chem. Soc. 5, 122-134.
- Alsalim, T. A., Hadi, J. S., Al-Nasi, E. A., AbboH, S. & Titinch, S. J. (2010). Catal Lett. 136, 228-233.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758-3765.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharm. Tech. Res. 1, 22-33.

[‡] Additional correspondence author, e-mail: sgteoh@usm.my. § Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2011). E67, o143 [doi:10.1107/S1600536810051822]

3-{(*E*)-[(4-Formylphenyl)iminiumyl]methyl}naphthalen-2-olate

A. M. Farag, S. G. Teoh, H. Osman, M. Hemamalini and H.-K. Fun

Comment

Condensation reactions between carbonyl compounds and primary amines have provided one of the most important and widely studied classes of chelating ligand. The ligands, usually obtained via Schiff base condensation reactions, show variations in flexibility and electronic properties (Alsalim *et al.*, 2010). Schiff bases are a class of important compounds in the medicinal and pharmaceutical fields. They exhibit biological properties, including antibacterial, antifungal (Wadher *et al.*, 2009; Abou-Melha & Faruk, 2008), anticancer, herbicidal (Wadher *et al.*, 2009), anti-inflammatory, analgesic and kinase inhibitory activities (Sondhi *et al.*, 2006).

The asymmetric unit of the title compound is shown in Fig. 1. The molecule is a zwitterion in the crystal, with the naphthol hydroxy group deprotonated and the imine N atom protonated. It adopts an *E* configuration about the central C11=N1 double bond [1.329 (3) Å] with the torsion angle C10-C11-N1-C12 = -179.4 (3)°. The dihedral angle between the naphthyl (C1–C10) ring system and the benzene (C12–C17) ring is 1.73 (11)°.

In the crystal structure (Fig. 2), an intramolecular N1—H1N1···O1 hydrogen bonding generates an *S*(6) ring motif (Bernstein *et al.*, 1995). Furthermore, the adjacent molecules are connected by intermolecular C8—H7···O2 and C17—H17A···O2 (Table 1) hydrogen bonds forming a supramolecular ribbon along the *b*-axis.

Experimental

2-Hydroxy-1-naphthaldehyde (0.172 g, 1 mmol) was added to the solution of 4-aminobenzaldehyde (0.121 g, 1 mmol) in ethanol (30 ml) following which the mixture was refluxed with stirring for 1 h. The resultant orange needle-shaped single crystals suitable for X-ray structure determination which formed was then filtered and washed with ethanol

Refinement

Atom H1N1 was located from a difference Fourier map and refined freely [N—H = 1.00 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular interaction is shown as dashed lines

Fig. 2. A molecular ribbon generated by C—H…O hydrogen bonds.

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 2561 reflections

F(000) = 576 $D_{\rm x} = 1.348 \text{ Mg m}^{-3}$

 $\theta = 3.2-30.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KNeedle, orange

 $0.86 \times 0.08 \times 0.07 \text{ mm}$

3-{(E)-[(4-Formylphenyl)iminiumyl]methyl}naphthalen-2-olate

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	2394 independent reflections
Radiation source: fine-focus sealed tube	1416 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.054$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -8 \rightarrow 8$
$T_{\min} = 0.928, T_{\max} = 0.994$	$k = -15 \rightarrow 14$
11574 measured reflections	$l = -16 \rightarrow 17$

Refinement

Refinement on F^2

 $wR(F^2) = 0.171$

2394 reflections194 parameters0 restraints

S = 1.04

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.064$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^2(F_0^2) + (0.0799P)^2 + 0.244P]$
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.13 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.6211 (3)	-0.00216 (15)	0.67024 (13)	0.0694 (7)
O2	0.9842 (4)	-0.31405 (18)	0.16917 (18)	0.0913 (8)
N1	0.7418 (3)	-0.02531 (16)	0.50829 (17)	0.0496 (6)
C1	0.6323 (4)	0.0967 (2)	0.65940 (19)	0.0527 (7)
C2	0.5864 (4)	0.1658 (2)	0.73351 (19)	0.0578 (8)
H2	0.5496	0.1373	0.7890	0.069*
C3	0.5952 (4)	0.2702 (2)	0.72465 (19)	0.0563 (8)
H3	0.5634	0.3119	0.7743	0.068*
C4	0.6515 (4)	0.3201 (2)	0.64209 (19)	0.0503 (7)
C5	0.6622 (4)	0.4289 (2)	0.6367 (2)	0.0673 (9)
H4	0.6302	0.4692	0.6872	0.081*
C6	0.7185 (5)	0.4774 (2)	0.5590 (2)	0.0804 (11)
Н5	0.7255	0.5502	0.5564	0.096*
C7	0.7654 (5)	0.4169 (2)	0.4837 (2)	0.0752 (10)
Н6	0.8034	0.4496	0.4302	0.090*
C8	0.7564 (4)	0.3100 (2)	0.4871 (2)	0.0587 (8)
H7	0.7884	0.2712	0.4356	0.070*
С9	0.7000 (3)	0.25724 (19)	0.56633 (17)	0.0450 (7)
C10	0.6907 (3)	0.14332 (19)	0.57427 (17)	0.0448 (7)
C11	0.7430 (3)	0.07881 (19)	0.50285 (18)	0.0463 (7)
H11A	0.7807	0.1098	0.4485	0.056*
C12	0.7929 (3)	-0.09668 (18)	0.44023 (18)	0.0440 (7)
C13	0.7754 (4)	-0.20274 (19)	0.46048 (19)	0.0524 (7)
H13A	0.7329	-0.2236	0.5175	0.063*
C14	0.8209 (4)	-0.2768 (2)	0.39614 (19)	0.0537 (7)
H14A	0.8092	-0.3476	0.4104	0.064*
C15	0.8834 (3)	-0.24824 (19)	0.31103 (18)	0.0455 (7)
C16	0.9013 (4)	-0.1417 (2)	0.29133 (19)	0.0534 (7)
H16A	0.9443	-0.1212	0.2344	0.064*
C17	0.8566 (4)	-0.0671 (2)	0.35455 (18)	0.0513 (7)
H17A	0.8688	0.0037	0.3403	0.062*
C18	0.9279 (4)	-0.3289 (2)	0.2450 (2)	0.0625 (8)
H18A	0.9115	-0.3982	0.2629	0.075*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H1N1	0.698 (4)	-0.048 (2)	0.570	(2) 0.0	086 (10)*	
Atomic disp	placement parameter	$s(A^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0902 (17)	0.0565 (13)	0.0634 (14)	0.0048 (11)	0.0285 (12)	0.0080 (10)
02	0.116 (2)	0.0838 (16)	0.0757 (17)	-0.0014 (13)	0.0242 (15)	-0.0122 (12)
N1	0.0528 (15)	0.0482 (14)	0.0486 (15)	0.0021 (10)	0.0130 (12)	-0.0011 (11)
C1	0.0472 (18)	0.0561 (18)	0.0552 (18)	0.0041 (13)	0.0085 (14)	0.0025 (14)
C2	0.0542 (19)	0.074 (2)	0.0461 (17)	-0.0002 (15)	0.0125 (14)	-0.0011 (14)
C3	0.053 (2)	0.065 (2)	0.0511 (18)	0.0029 (14)	0.0072 (15)	-0.0126 (14)
C4	0.0432 (17)	0.0557 (17)	0.0520 (17)	0.0027 (12)	0.0037 (14)	-0.0088 (13)
C5	0.080 (2)	0.0574 (19)	0.065 (2)	0.0052 (15)	0.0082 (18)	-0.0145 (15)
C6	0.115 (3)	0.0487 (18)	0.078 (2)	0.0010 (17)	0.016 (2)	-0.0039 (17)
C7	0.104 (3)	0.055 (2)	0.068 (2)	0.0024 (17)	0.0191 (19)	0.0091 (16)
C8	0.072 (2)	0.0506 (18)	0.0543 (18)	0.0065 (14)	0.0099 (16)	-0.0014 (13)
C9	0.0373 (16)	0.0488 (15)	0.0487 (16)	0.0020 (11)	0.0018 (13)	-0.0020 (12)
C10	0.0379 (16)	0.0494 (16)	0.0475 (16)	0.0032 (11)	0.0058 (13)	-0.0001 (12)
C11	0.0440 (16)	0.0482 (16)	0.0470 (16)	0.0035 (12)	0.0053 (13)	0.0025 (12)
C12	0.0374 (16)	0.0447 (15)	0.0500 (17)	0.0019 (11)	0.0053 (13)	-0.0008 (12)
C13	0.0563 (19)	0.0534 (17)	0.0479 (16)	0.0013 (13)	0.0088 (14)	0.0058 (13)
C14	0.0603 (19)	0.0427 (15)	0.0581 (18)	0.0008 (12)	0.0048 (15)	-0.0005 (13)
C15	0.0385 (16)	0.0478 (15)	0.0501 (17)	0.0002 (12)	0.0022 (13)	-0.0032 (12)
C16	0.0525 (19)	0.0583 (18)	0.0500 (17)	-0.0030 (13)	0.0124 (14)	-0.0004 (13)
C17	0.0570 (18)	0.0440 (15)	0.0539 (17)	-0.0007 (12)	0.0152 (14)	0.0032 (12)
C18	0.071 (2)	0.0581 (18)	0.059 (2)	-0.0023 (15)	0.0134 (17)	-0.0067 (14)

Geometric parameters (Å, °)

O1—C1	1.272 (3)	С7—Н6	0.9300
O2—C18	1.201 (3)	C8—C9	1.404 (4)
N1—C11	1.329 (3)	С8—Н7	0.9300
N1—C12	1.401 (3)	C9—C10	1.458 (3)
N1—H1N1	1.00 (3)	C10-C11	1.385 (3)
C1—C2	1.437 (4)	C11—H11A	0.9300
C1—C10	1.446 (3)	C12—C13	1.390 (3)
C2—C3	1.338 (4)	C12—C17	1.392 (3)
С2—Н2	0.9300	C13—C14	1.374 (4)
C3—C4	1.427 (4)	С13—Н13А	0.9300
С3—Н3	0.9300	C14—C15	1.378 (4)
C4—C5	1.390 (4)	C14—H14A	0.9300
C4—C9	1.413 (3)	C15—C16	1.394 (3)
C5—C6	1.359 (4)	C15—C18	1.448 (4)
С5—Н4	0.9300	C16—C17	1.367 (3)
C6—C7	1.389 (4)	C16—H16A	0.9300
С6—Н5	0.9300	С17—Н17А	0.9300
С7—С8	1.364 (4)	C18—H18A	0.9300
C11—N1—C12	127.2 (2)	C4—C9—C10	119.3 (2)

C11—N1—H1N1	110.3 (17)	C11—C10—C1	119.3 (2)
C12—N1—H1N1	122.6 (17)	C11—C10—C9	121.2 (2)
O1—C1—C2	119.8 (2)	C1—C10—C9	119.5 (2)
O1—C1—C10	122.3 (2)	N1-C11-C10	123.1 (2)
C2C1C10	117.9 (2)	N1—C11—H11A	118.5
C3—C2—C1	121.7 (3)	C10-C11-H11A	118.5
C3—C2—H2	119.2	C13—C12—C17	119.2 (2)
C1—C2—H2	119.2	C13—C12—N1	117.0 (2)
C2—C3—C4	122.7 (3)	C17—C12—N1	123.8 (2)
С2—С3—Н3	118.7	C14—C13—C12	119.9 (2)
С4—С3—Н3	118.7	C14—C13—H13A	120.1
C5—C4—C9	120.3 (3)	C12—C13—H13A	120.1
C5—C4—C3	120.7 (3)	C13—C14—C15	121.4 (2)
C9—C4—C3	119.0 (2)	C13—C14—H14A	119.3
C6—C5—C4	121.3 (3)	C15—C14—H14A	119.3
С6—С5—Н4	119.3	C14—C15—C16	118.4 (2)
С4—С5—Н4	119.3	C14—C15—C18	119.5 (2)
C5—C6—C7	119.1 (3)	C16—C15—C18	122.1 (3)
С5—С6—Н5	120.5	C17—C16—C15	120.9 (2)
С7—С6—Н5	120.5	C17—C16—H16A	119.5
C8—C7—C6	120.9 (3)	C15—C16—H16A	119.5
С8—С7—Н6	119.6	C16—C17—C12	120.2 (2)
С6—С7—Н6	119.6	С16—С17—Н17А	119.9
С7—С8—С9	121.6 (3)	С12—С17—Н17А	119.9
С7—С8—Н7	119.2	O2—C18—C15	125.7 (3)
С9—С8—Н7	119.2	O2-C18-H18A	117.2
C8—C9—C4	116.8 (2)	C15-C18-H18A	117.2
C8—C9—C10	123.9 (2)		
O1—C1—C2—C3	-179.6 (3)	C4-C9-C10-C11	-177.8 (2)
C10-C1-C2-C3	0.6 (4)	C8—C9—C10—C1	179.4 (3)
C1—C2—C3—C4	-0.4 (4)	C4—C9—C10—C1	-0.1 (3)
C2—C3—C4—C5	-178.7 (3)	C12-N1-C11-C10	-179.6 (2)
C2—C3—C4—C9	0.0 (4)	C1-C10-C11-N1	0.2 (4)
C9—C4—C5—C6	0.2 (5)	C9—C10—C11—N1	177.9 (2)
C3—C4—C5—C6	178.9 (3)	C11—N1—C12—C13	-178.2 (2)
C4—C5—C6—C7	0.3 (5)	C11—N1—C12—C17	0.8 (4)
C5—C6—C7—C8	-0.3 (5)	C17—C12—C13—C14	0.0 (4)
C6—C7—C8—C9	-0.1 (5)	N1—C12—C13—C14	179.1 (2)
C7—C8—C9—C4	0.6 (4)	C12—C13—C14—C15	-0.3 (4)
C7—C8—C9—C10	-179.0 (3)	C13—C14—C15—C16	0.5 (4)
C5—C4—C9—C8	-0.6 (4)	C13-C14-C15-C18	-179.4 (3)
C3—C4—C9—C8	-179.3 (2)	C14—C15—C16—C17	-0.5 (4)
C5—C4—C9—C10	178.9 (2)	C18—C15—C16—C17	179.3 (3)
C3—C4—C9—C10	0.2 (4)	C15-C16-C17-C12	0.3 (4)
O1-C1-C10-C11	-2.4 (4)	C13—C12—C17—C16	0.0 (4)
C2-C1-C10-C11	177.4 (2)	N1—C12—C17—C16	-179.1 (2)
O1—C1—C10—C9	179.8 (2)	C14—C15—C18—O2	-179.6 (3)
C2-C1-C10-C9	-0.3 (4)	C16—C15—C18—O2	0.5 (5)
C8—C9—C10—C11	1.7 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1N1···O1	1.00 (3)	1.68 (3)	2.551 (3)	143 (2)
C8—H7···O2 ⁱ	0.93	2.54	3.399 (4)	153
C17—H17A···O2 ⁱ	0.93	2.57	3.453 (4)	159
Symmetry codes: (i) $-x+2$, $y+1/2$, $-z+1/2$.				

